Abstract

This paper proposes a new type of variable-cross-section replaceable link that can isolate the plastic deformation. The link and the frame beam connect with the expanding section by a bolt along the flange and web separately. It is easy to design an elastic bolt, reduce bolt slippage, and facilitate link replacement after an earthquake. Considering the large elastic deformation range of high-strength steel and the superior plastic deformation of the new type of replaceable link, a high-strength eccentrically braced steel frame with a variable-section replaceable link is raised by setting a new type of variable-section replaceable link in the eccentrically braced steel frame. Then, the existing end plate connection replaceable link test specimen is simulated and verified by using ABAQUS software. The finite element model of the high-strength eccentrically braced steel frame with a variable-cross-section replaceable link is established, and the bearing capacity, stiffness, plastic rotation, plastic distribution, and other bearing mechanisms of the structure are studied by cyclic loading. The length of the energy-consuming region (e), the steel strength of the link and other components, and the length of the replaceable link (e’) are compared and analyzed with regard to the seismic performance of the structure. The results are of great significance for understanding and exploring the force mechanism, energy dissipation characteristics of the new variable-section replaceable link, and the seismic performance of the high-strength eccentrically braced steel frame, and it also provides a reference for subsequent research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call