Abstract

In this paper, a coupled thermo-mechanical plane-strain large-deformation orthogonal cutting FE model is proposed on the basis of updated Lagrangian formulation to simulate diamond turning. In order to consider the effects of a diamond cutting tool’s edge radius, rezoning technology is integrated into this FE based model. The flow stress of the workpiece is modeled as a function of strain, strain rate, and temperature, so as to reflect its dynamic changes in physical properties. In this way, the influences of cutting-edge radius, rake angle, clearance angle, depth of cut, and cutting velocity on the residual stresses of machined surface are analyzed by FE simulation. The simulated results indicate that a rake angle of about 10° and a clearance angle of 6° are the optimal geometry for a diamond tool to machine ductile materials. Also, the smaller the cutting edge radius is, the less the residual stresses become. However, a great value can be selected for cutting velocity. For depth of cut, the ‘size effect’ will be dependent upon it. Residual stresses will be reduced with the decrement of depth of cut, but when the depth of cut is smaller than the critical depth of cut (i.e., about 0.5 μm according to this work) residual stresses will decrease accordingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.