Abstract

This paper presents a finite element (FE) modelling to predict the behaviour of ultra-high performance concrete (UHPC) members under static flexural loading. A plasticity-based constitutive model for concrete and an implicit solver in LS-DYNA were adopted in the numerical simulation. Experimental data for 21 UHPC specimens tested in the present study and in previous works were used to calibrate and validate the proposed FE model and modelling technique. The simulation was able to accurately predict the experimentally obtained ultimate strength, stiffness, and hardening and softening behaviours of the specimens. This demonstrates the effectiveness and adequacy of the developed FE model and modelling technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.