Abstract

In this paper the effect of adjacent threading dislocation at the edge of the GaN/AlN quantum dot is analysed by use of the finite element analysis. Elastic as well electric effects related to dislocation core are taken into account. Two types of threading dislocations: edge- and screw-type, common for III-nitride epitaxial layers, are considered. Also, three different QD geometries are considered to estimate the impact of the threading dislocation on the quantum heterostructure. It is demonstrated that the local elastic and electric fields around dislocation affect local piezoelectric fields built-in the quantum dot. Local lattice deformation near the dislocation core reduce residual strains in the quantum dot. It is prominent in the case of edge-type dislocation. The presence of an electric charge along dislocation line provides significant shift of the total potential towards the negative values. However, estimated difference in band-to-band transition energy for edge- and screw-type dislocations are rather small, what suggest low sensitivity to the charge density along dislocation line. Unexpectedly, local strain field around the edge-type dislocation, slightly compensate the negative affect of the electrostatic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.