Abstract
The ionic conductivity of doped ceria is strongly influenced by temperature, oxygen partial pressure, dopant concentration and microstructure of the material. While theory and experiments generally agree on the influence of the first two parameters, the other influences are still not fully understood. A reliable simulation model of the material’s electrical conductivity is thus necessary to interpret the existing measurements.Until now, prediction of the electrical conductivity of these materials relies mainly on analytical models. This approach yields useful insights but it also has drawbacks. We implement the partial differential equations that govern charge carrier transport and electrical potential in a finite element model. This numerical approach enables us to treat grains of arbitrarily small size and to predict electrical conductivities at any applied current density. The results predicted by our model are compared to the available measurements in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.