Abstract
A finite element (FE) modelling methodology is presented to analyse the dynamic response of carbon fibre reinforced polymer laminates when loaded by the shock wave generated by an airborne explosive blast. An FE model is developed to calculate the out-of-plane deformation of laminates over the entire duration of an explosive blast loading event. The FE model can also predict the initiation and propagation of delamination cracking and ply rupture in laminates. The response of the composite target plates to explosive blast loading was modelled in the FE program Abaqus using an explicit solver. The explosive air blast load was modelled using the ConWep algorithm. The accuracy of the FE model is assessed using experimental data obtained from small-scale far-field and near-field explosive blast tests performed on carbon-polyester and carbon-vinyl ester laminates. The FE model can predict the dynamic deformation of the laminates to within an accuracy of ~10%. The model can also accurately determine delamination cracks and broken plies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.