Abstract

Cracking in structures significantly affects their durability, water transfer and ultimately their safety. This structural disorder provides a preferential path for the penetration of fluids and contributes significantly to the deterioration of the material.In this work, a macroscopic model intended to predict the change of permeability with respect to cracking is proposed. The development reported here is implemented within an orthotropic continuum damage model able to calculate crack openings. The proposed model assumes an initially isotropic permeability tensor, which becomes anisotropic with damage. The objectivity of the hydraulic response toward the finite element mesh is ensured by considering the crack localization problem when building the permeability tensor. Finally, the model is used to simulate cracking and permeability variations on virtual and real structures. The simulation results are compared with experimental water flow rate measurements through a real reinforced concrete element subjected to tensile loading as found in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.