Abstract

Internal mixers are used extensively in industry for mixing the components of rubber compounds. In these operations, in order to achieve effective mixing, the mixer chamber is always partially filled. This inevitably results in the appearance of multiple free surfaces in flow fields inside rubber mixer chambers. Mathematical modelling of such a flow regime is not a simple task and requires a great deal of effort. Traditional free surface flow-modelling techniques, which are mainly based on the use of volume-of-fluid or pseudo-density approaches in an Eulerian framework, are not flexible enough to cope with this problem. In this paper we describe a new method for the numerical modelling of free surface flows. In this method the pseudo-density approach is extended to a special Lagrangian framework along the trajectories of the fluid particles. We show that the developed scheme can very effectively simulate viscoelastic free surface flows encountered in rubber-mixing processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call