Abstract

Cold bending is a cost-effective solution that is sometimes used for curving structural steel girders. Current usage for bridge structures is limited to projects that fall outside the jurisdiction of American Association of State Highway and Transportation Officials (AASHTO) because of the lack of technical knowledge surrounding this technique. This paper presents results from a three-dimensional finite element model to assess the structural behaviour exhibited by steel girders during bending for a proprietary cold curving system. A non-linear FE model is validated against measured data obtained from a previously tested girder. The FE model is extended to explore the performance of all structural components of the girder during bending such as deformations in flanges and web, residual stresses and plastic strains. Findings from this paper provide a framework for accurately predicting the cold bent geometry and how to incorporate residual stresses and plastic strains in the design of curved girders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call