Abstract

Clinical studies show electrical stimulation (ES) to be a potential therapy for the healing and regeneration of various tissues. Understanding the mechanisms of cell response when exposed to electrical fields can therefore guide the optimization of clinical applications. In vitro experiments aim to help uncover those, offering the advantage of wider input and output ranges that can be ethically and effectively assessed. However, the advancements in in vitro experiments are difficult to reproduce directly in clinical settings. Mainly, that is because the ES devices used in vitro differ significantly from the ones suitable for patient use, and the path from the electrodes to the targeted cells is different. Translating the in vitro results into in vivo procedures is therefore not straightforward. We emphasize that the cellular microenvironment's structure and physical properties play a determining role in the actual experimental testing conditions and suggest that measures of charge distribution can be used to bridge the gap between in vitro and in vivo. Considering this, we show how in silico finite element modelling (FEM) can be used to describe the cellular microenvironment and the changes generated by electric field (EF) exposure. We highlight how the EF couples with geometric structure to determine charge distribution. We then show the impact of time dependent inputs on charge movement. Finally, we demonstrate the relevance of our new in silico model methodology using two case studies: (i) in vitro fibrous Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS) scaffolds and (ii) in vivo collagen in extracellular matrix (ECM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.