Abstract

Squeal propensity of the in-plane modes and the constrained-layer type damping shims for disc brake system is investigated by using the finite element method. Theoretical formulation is derived for a rotating disc in contact with two stationary vibrating pads attached to the damping shim components. By the conversion from the theoretical to FE brake model, the full equations of motion for the actual disc brake system describes the disc rotation, the in-plane friction characteristics and damping shims in association with squeal vibration. It is concluded from the results that the in-plane torsion modes can be generated by the negative friction slope, but they cannot be controlled by the damping shims. The in-plane radial mode is also investigated and found to be very insensitive in squeal generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.