Abstract

A finite element model for a piezoelectric plate with edge debonded actuators is presented. This model is employed to investigate the effect of edge debonding on actuation authority, natural frequencies and vibration control performance. The regions of the plate with the piezoelectric patches are modelled such that each layer undergoes rotation due to shear deformation independently. The necessary constraints for continuity of displacements at the interfaces of the layers are imposed. The plate with edge debonded actuators is idealized by dividing it into debonded regions and healthy regions. A finite element procedure for imposing the constraints regarding continuity of displacements at the interfaces of the adjacent regions is developed and is implemented using MATLAB. Experiments are conducted for finding the actuation authority and natural frequencies of the plate with debonded actuators. It has been found that the developed model has predicted the mechanics of actuator debonding properly. The investigations have revealed the fact that the edge debonding of actuators will result in considerable degradation in actuation authority and vibration control performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.