Abstract

The purpose of this study is to assess the effect of van der Waals interactions within multi-walled carbon nanotubes with the three dimensional finite element models. The elastic buckling behaviors of nanotubes are treated under axial compressive force acting on open both ends of nanotubes and considered with various boundary conditions. The analysis is based on the assumptions that the covalent bond of each wall is represented by an elastic beam element while the van der Waals force of adjacent walls are represented by a nonlinear truss element following the Lennard-Jones “6-12” theory. The models of double-walled carbon nanotubes are used to explain the characteristic of multi-walled carbon nanotubes and then results compared with the column theory. The results show that the critical load of nanotubes depends on atomic arrangement, tube length, and number of walls, while the van der Waals force has a small effect on the buckling load for multi-walled carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.