Abstract
A powder-level, finite-element model is created to describe densification, as a function of applied stress during uniaxial hot pressing, of CP-Ti and Ti-6Al-4V powders with spherical or spheroidal shapes for various packing geometries. Two cases are considered: (1) isothermal densification (in the α- or β-fields of CP-Ti and in the β-field of Ti-6Al-4V) where power-law creep dominates and (2) thermal cycling densification (across the α/β-phase transformation of Ti-6Al-4V) where transformation mismatch plasticity controls deformation at low stresses. Reasonable agreement is achieved between numerical results and previously published experimental measurements and continuum modeling predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.