Abstract
The ultrasound stimulated thermography method is usually used to detect the temperature rise at a defect position. The temperature rise can be due to the friction between the edges of the defect and/or the plastic deformation around the defect. This paper presents another aspect of the method when the ultrasounds are propagating in a viscoelastic anisotropic material, such as polymers or fiber-reinforced polymers. The attenuation of the waves produces a distributed temperature field. Therefore, even a defect that does not produce some heat can be detected, the ultrasonic field is modified. A finite element model is used for computing the temperature field and for predicting the possibility for an infrared camera of detecting the temperature rise and its modification due to a defect. The model computes the stress and displacement fields associated with the propagation and the loss of energy. Then the heat equation is solved with this loss as a source of heating. An experiment is done with a sonotrode that excites a PVC plate. The ultrasonic displacement at the top of the plate is measured with a laser velocimeter and introduced in the model. Finally, the model result is compared to the image produced by the camera.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.