Abstract

We have performed a comparative computational study of magnetic particle alignment in a strong magnetic field and ambient viscous fluid using the first-principles Navier–Stokes equation as well as numerical modeling using the finite element method (FEM). FEM solution has been compared with the solution of the unsteady rotations of a magnetic particle in a viscous fluid during the alignment process described with nonlocal integro-differential equations (IDEs) for torque and angular velocity. The assumption of nonlocality comes from the history term of acceleration torque with a non-Basset kernel function, which has its origin in the presence of vortices in the flow of a particle fluid environment due to its unsteady rotation and ambient fluid inertia and friction. The flow vortices of the ambient fluid are explicitly shown in the solution of the FEM model. Moreover, the solution of the time evolution of the alignment angle and angular velocity for the FEM model are in good agreement with an IDE model which we have recently developed. The obtained results are justification for interchangeability of the FEM and IDE models, which may have important consequences for large-scale simulations of magnetic microparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call