Abstract

AbstractA simulation of the nonlinear electromechanical macroscopic behavior of ferroelectric materials by means of the finite element method is presented. A material point is depicted by a representative volume element, for which homogeneous boundary conditions are valid. The evolution of integral averages over the representative volume element is to homogenize the results. For this homogenization we favor a finite element model in which each Gauss point represents exactly one single crystal. Their number of internal variables is limited to the lattice orientation and the volume fractions of the domains. The former are randomly distributed in space. It is possible to calculate the material behavior for arbitrary coupled and nonlinear electromechanical loading cases, but the model is not effective for the solution of boundary value problems for entire bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.