Abstract
Plastic strain control of aluminum alloys are of importance for improvement of sheet microstructure and properties. The paper presents a numerical analysis of the strain distribution through pure Al sheet thickness during cold rolling with flat and grooved rolls. FEM simulations were carried out with using software DEFORM 3D. For verification of the numeric modeling results, the experimental analysis was carried out. The influence of the roll shape on strain distribution through Al sheet thickness was studied. It was shown that the strain effective increases from 0.9 to 1.5 during cold rolling with grooved rolls, when depth of indentation of grooved rolls in sheet increases from 0.25 to 0.50 mm. FE model can be used to optimize the cold rolling process to improve microstructure and mechanical properties of aluminum sheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.