Abstract

An explicit, Lagrangian, elastic-plastic, finite element code has been modified to accommodate chip separation, segmentation, and interaction in modeling of continuous and segmented chip formation in highspeed orthogonal metal cutting process. A fracture algorithm has been implemented that simulates the separation of the chip from the workpiece and the simultaneous breakage of the chip into multiple segments. The path of chip separation and breakage is not assigned in advance but rather is controlled by the state of stress and strain induced by tool penetration. A special contact algorithm has been developed that automatically updates newly created surfaces as a result of chip separation and breakage and flags them as contact surfaces. This allows for simulation of contact between tool and newly created surfaces as well as contact between simulated chip segments. The work material is modeled as elastic/perfectly plastic, and the entire cutting process from initial tool workpiece contact to final separation of chip from workpiece is simulated. In this paper, the results of the numerical simulation of continuous and segmented chip formation in orthogonal metal cutting of material are presented in the form of chip geometry, stress, and strain contours in the critical regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call