Abstract

Powder compaction is widely used to manufacture a wide range of particulate products. Understanding powder compaction behaviour is of practical importance to improve the efficiency of product development and the manufacturing performance. This paper briefly introduces the finite element method (FEM) that has been extensively used in modelling powder compaction, for which the DPC model is introduced. Typical finite element analysis results are presented to illustrate the capability of FEM in modelling powder deformation. It shows that non-uniform density and temperature distributions are generally obtained during powder compaction. In addition, the correlations between the fracture patterns observed experimentally with the stress distribution obtained using FEM are examined. It is shown that the stress distribution could provide useful information on the potential fracture patterns during powder compaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.