Abstract

AbstractEarthquakes have been recognized as resulting from a stick–slip frictional instability along the faults between deformable rocks. An arbitrarily‐shaped contact element strategy, named the node‐to‐point contact element strategy, is proposed, applied with the static‐explicit characters to handle the friction contact between deformable bodies with stick and finite frictional slip and extended here to simulate the active faults in the crust with a more general nonlinear friction law. An efficient contact search algorithm for contact problems among multiple small and finite deformation bodies is also introduced. Moreover, the efficiency of the parallel sparse solver for the nonlinear friction contact problem is investigated. Finally, a model for the plate movement in the north‐east zone of Japan under gravitation is taken as an example to be analyzed with different friction behaviors. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.