Abstract

Well-ordered porous materials are very promising in orthopedics since they allow tailoring the mechanical properties. Finite element (FE) analysis is commonly used to evaluate the mechanical behavior of well-ordered porous materials. However, FE results generally differ importantly from experimental data. In the present article, three types of manufacturing irregularities were characterized on an additive manufactured porous titanium sample having a simple cubic unit-cell: strut diameter variation, strut inclination and fractured struts. These were included in a beam FE model. Results were compared with experimental data in terms of the apparent elastic modulus (Eap) and apparent yield strength (SY,ap). The combination of manufacturing irregularities that yielded the closest results to experimental data was determined. The idealized FE model resulted in an Eap one order of magnitude larger than experimental data and a SY,ap almost twice the experimental values. The strut inclination and fractured struts showed the strongest effects on Eap and SY,ap, respectively. Combining the three manufacturing irregularities produced the closest results to experimental data. The model also performed well when applied to samples having different structural dimensions. We recommend including the three proposed manufacturing irregularities in the FE models to predict the mechanical behavior of such porous structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call