Abstract

We have developed two finite element techniques with reduced dispersion for linear elastodynamics that are used with explicit time-integration methods. These techniques are based on the modified integration rule for the mass and stiffness matrices and on the averaged mass matrix approaches that lead to the numerical dispersion reduction for linear finite elements. The analytical study of numerical dispersion for the new techniques is carried out in the 1-D, 2-D and 3-D cases. The numerical study of the efficiency of the dispersion reduction techniques includes the two-stage time-integration approach with the filtering stage (developed in our previous papers) that quantifies and removes spurious high-frequency oscillations from numerical results. We have found that in contrast to the standard linear elements with explicit time-integration methods and the lumped mass matrix, the finite element techniques with reduced dispersion yield more accurate results at small time increments (smaller than the stability limit) in the 2-D and 3-D cases. The recommendations for the selection of the size of time increments are suggested. The new approaches with reduced dispersion can be easily implemented into existing finite element codes and lead to significant reduction in computation time at the same accuracy compared with the standard finite element formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.