Abstract
Three bridges were recently constructed in Missouri using a new type of hybrid composite beam (HCB) incorporated within traditional RC deck systems. These HCBs are comprised of three main subcomponents: a composite shell, compression reinforcement, and tension reinforcement. The compression reinforcement is a self-consolidating concrete (SCC) arch that is tied at the ends by high-strength galvanized steel strands. The compression and tension reinforcements are encapsulated in a glass fiber–reinforced polymer (GFRP) box, and the voids are filled with polyisocyrunate (polyiso) foam. This unique configuration aims to optimize the structural performance of the HCB constituents, hence optimizing the overall performance of the beam. However, because of the novelty of the HCB, its structural behavior is not yet completely understood. Consequently, the finite-element (FE) modeling of this new type of beam is crucial for providing deeper insight into its structural behavior and validating the current design assumptions. It is, therefore, the main goal of this study to examine the accuracy of linear FE analysis (FEA) in predicting the static behavior of the HCB under service loads. This paper explains in detail the FE modeling of the superstructure of one of the recently constructed HCB bridges, using two commercial FEA packages. A field load test that simulates several load cases was applied to the bridge, and the deflections of the HCBs were measured at different locations. A simple analytical procedure that is based on the transformed area method is also used to predict the HCB deflections. The comparison between measured deflections and predicted deflections shows that the FEA can predict the HCB bridge behavior with acceptable accuracy, whereas the theoretical procedure significantly overestimates the beams’ deflections. Finally, the two FE models are used to analyze the behavior of the HCBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.