Abstract

Niobium (Nb) used in superconducting radio-frequency cavities requires smooth surface to achieve optimal performance. In this work, a finite element model that coupled electrochemistry, heat transfer, and fluid dynamics was developed to investigate the electrochemical polishing mechanisms of Nb, using experimentally measured polarization results of coupon samples as validations. The current and potential distribution, oxide growth kinetics of Nb in a complex cavity geometry was investigated as a function of temperature and coolant flow. A low temperature coolant with intermediate flow rate was found to reduce surface current and ensure oxide uniformity. These results could shed light on the design of future particle accelerators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call