Abstract

The purpose of this work was to develop a three-dimensional finite element model to simulate ductile tearing in pipeline-steels. The measured load versus displacement histories for single edge notch tension (SENT) and surfaced-cracked wide plate specimens, both made of X-70 pipeline-steel plates and subject to tensile load, were numerically predicted using the proposed damage model. In the numerical model, progressive damage was restricted to a predetermined ductile tearing zone. The material damage behaviour in this tearing zone was described in terms of a Gurson-Tvergaard (G-T) isotropic constitutive model, which accounts for micro-void nucleation and growth. The criterion for the onset of void coalescence was determined via the Thomason criterion. Experimentally measured load-displacement histories for all specimens were accurately reproduced by the proposed model, irrespective of different plate width, thickness and crack configurations. The numerical predictions were in good agreement with experimental test data in terms of both the maximum load and the corresponding displacement at maximum load. The proposed damage model was also used to numerically estimate the effect of crack growth on maximum load for these cracked specimens. The results in this paper demonstrate the potential of the proposed damage model as an engineering tool for analyzing ductile tearing in application to defect assessment of surface cracked pipes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.