Abstract

A study of the acousto-optic (AO) effect in a family of oxide crystals (including e.g., TiO2, ZnO, LiNbO3, and ferroelectric perovskites) as well as semiconductors has been conducted by finite element analysis method. In addition, the acousto-optic figure of merit (FOM) as a function of material's refractive index, density, effective AO coefficient and the velocity of the acoustic wave in the material, is also investigated. By examining the directional dependent velocity, acousto-optic coefficients, and refractive index, the acousto-optic FOM can be calculated and plotted in all directions revealing the optimal crystal orientation to maximize coupling between the optical and acoustic waves. A finite element model was developed to corroborate the predicted interaction. The model examines the diffraction that occurs by the optical wave as it travels through an acousto-optic medium. The combined information gained from Mathematica and COMSOL Multiphysics-based modeling is shown to be an effective means of predicating acousto-optic device functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.