Abstract

In this study, the thermal insulation properties of nonwoven samples embedded with silica aerogel are examined. Finite element based simulations are performed using COMSOL Multiphysics and ANSYS software in order to predict the thermal performance of samples with different aerogel content. Comparison is made between samples with aerogel as insulating material with stagnant air as surrounding fluid in the fibrous material. Samples were developed with short polyethylene terephthalate (PET)-polypropylene (PP) fiber blended nonwovens. These materials were applied with aerogel granules so as to occupy 70%, 80% and 90% volume respectively. Computational predictions were made with COMSOL for both aerogel and air in similar proportions. Thermal insulation was predicted using ANSYS at 248 K–258 K temperature. Experimental measurements were also conducted at such temperatures. The results of FEM based simulation and experimental measurements showed very high correlation. The predictions can be used for theoretical determination of thermal performance in aerogel blankets used in house buildings at sub-zero temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call