Abstract

<abstract> Finite element model updating (FEMU) is a technique to improve the analytical finite element (FE) model of any structure from its experimental modal test data. The main purpose to apply FEMU on structures is to remove the uncertainties or errors present in the analytical FE model. The main objective of this paper is to present a review on the various FEMU techniques which can be applied to remove the uncertainties present in the FE model of the actual engineering structures. Applications of various FEMU techniques on the metallic and the composite structures have been discussed in this review paper. FEMU is applied on the metallic and the composite structures to remove the error present in their FE models. The main objective of the FEMU is to accurately predict the modal analysis characteristics such as the spatial-model, modal-model and the response model of the structures. The uncertainties present in the analytical or simulated FE model of any structure may be due to its material properties, dimensions and most probably due to the uncertainties present in the boundary conditions of the structure. However, to provide a sufficient strength to this review paper, the different updating methods are applied on the three degree of freedom spring mass system, on a 1-D aluminum beam, 2-D aluminum panel and on a graphite-epoxy composite material laminate. It is found that the updating algorithms are fast and reliable enough to remove error present in the numerical or simulated FE model of the structures and deliver the accurate estimation of the spatial-model, modal-model and response model of the different material structures. </abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call