Abstract

Abstract In this study, Bioconversion process of glucose to fructose from date syrup using Escherichia coli K12 is modeled using a commercial computational fluids dynamics (CFD) code fluent FLUENT 6.3.23 [8] which we implemented a user-defined functions (UDF) to simulate the interrelationships at play between various phases. A two phases CFD model was developed using an Eulerian – Eulerian approach to calculate the fructose volume fraction produced during time. The bioconversion process was studied as function of three initial concentration of glucose (0.14, 0.242 and 0.463gL–1), three induction time (60, 120 and 180 mn) and three inoculum volume (100, 120 and 150mL). The numerical results are compared with experimental data for bioconversion rate and show good agreement (R2= 0.894). The optimal condition of diffusion was obtained by applying an initial concentration of glucose less than 0.2gL–1 and induction time great than 100 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.