Abstract

Salami are typical European dry fermented sausages manufactured mainly with pork meats. Water loss is a crucial aspect of industrial ripening process because it is responsible for the lowering of water activity, which determines limitations to successive conservation.This paper describes two parametric numerical models developed to study the moisture diffusion physics, during ripening and storage in package. Mass transfer equations inside the sausage volume were numerically solved using a finite element technique. A first model describes diffusion phenomena occurring inside the salami and the exchange phenomena involving the surface of the product and the industrial environment, while a second one describes also the evaporation and condensation phenomena occurring between the salami surface and the atmosphere inside the packaging. The models were experimentally validated showing a good agreement with observed data.The numerical models allowed to study the water transfer inside of dry fermented sausages with a detail unreachable by any experimental technique. In addition the models could be used to find the best conditions for ripening, packaging and distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.