Abstract

Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory is presented. The core of sandwich beam is fully metal or ceramic and skins are composed of a functionally graded material across the depth. Governing equations of motion and boundary conditions are derived from the Hamilton’s principle. Effects of power-law index, span-to-height ratio, core thickness and boundary conditions on the natural frequencies, critical buckling loads and load–frequency curves of sandwich beams are discussed. Numerical results show that the above-mentioned effects play very important role on the vibration and buckling analysis of functionally graded sandwich beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call