Abstract

A finite-element method (FEM) is newly formulated for the modal analysis of nonlinear periodic optical waveguides. In order to treat periodicity in the propagation direction, periodic boundary conditions are imposed on the envelope of electromagnetic fields. The validity of this method is verified by way of numerical examples of a PC waveguide composed of nonlinear dielectric pillars placed on square array in the cladding region. Furthermore, the present method is applied to various nonlinear photonic crystal waveguide structures for exploring appropriate structures to enhance the nonlinearity and their nonlinear modal properties are presented, including coupled-resonator optical waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.