Abstract
In this paper some finite element methods for Timoshenko beam, circular arch and Reissner-Mindlin plate problems are discussed. To avoid locking phenomenon, the reduced integration technique is used and a bubble function space is added to increase the solution accuracy. The method for Timoshenko beam is aligned with the Petrov-Galerkin formulation derived in Loula et al. (1987) and can be naturally extended to solve the circular arch and the Reissner-Mindlin plate problems. Optimal order error estimates are proved, uniform with respect to the small parameters. Numerical examples for the circular arch problem shows that the proposed method compares favorably with the conventional reduced integration method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.