Abstract

This paper deals with a class of elliptic differential eigenvalue problems (EVPs) of second order on a rectangular domain Ω⊂ℝ2, with periodic or semi-periodic boundary conditions (BCs) on two adjacent sides of Ω. On the remaining sides, classical Dirichlet or Robin type BCs are imposed. First, we pass to a proper variational formulation, which is shown to fit into the framework of abstract EVPs for strongly coercive, bounded and symmetric bilinear forms in Hilbert spaces. Next, the variational EVP serves as the starting point for finite element approximations. We consider finite element methods (FEMs) without and with numerical quadrature, both with triangular and with rectangular meshes. The aim of the paper is to show that well-known error estimates, established for finite element approximations of elliptic EVPs with classical BCs, remain valid for the present type of EVPs, including the case of multiple exact eigenvalues. Finally, the analysis is illustrated by a non-trivial numerical example, the exact eigenpairs of which can be determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.