Abstract
The desired mechanical properties of porous tissue engineering scaffolds may differ depending on the clinical applications. Therefore, it is crucial to be able to control these properties for specific cases. In the current study, cube shape, porous, silicate-based (13-93) bioactive glass scaffolds were fabricated by robotic deposition method. Scaffolds were prepared layer by layer to form constructs with a grid-like microstructure. After binder burnout, the constructs were sintered for 1 h at 700 °C to produce scaffolds consisting of dense bioactive glass struts (∼280 ± 20 μm in diameter) at different pore widths (300 ± 50, 600 ± 25, and 900 ± 50 μm). The mechanical response of the scaffolds in compression was measured experimentally. The stress analysis of the complete scaffolds with varying pore width and layer spacing parameters has been performed by finite element method (FEM) under compression to investigate the state of stress fields created within the scaffolds. Such an analysis can be used to vary several geometrical parameters and to choose the most suitable ones for the replacement of natural tissues. The compressive strengths predicted by the FEM simulations were successfully validated by comparison with experimental uniaxial compression test data, justifying the suitability of the present approach for the optimization purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.