Abstract

In overlaid pavements, working cracks in existing pavement systems propagate upward to the new pavement surface and cause reflective cracking, one of the most serious causes of deterioration in overlay systems. Several techniques to reduce reflective cracking have been introduced. However, the reflective cracking mechanism is not yet well understood. Fracture mechanics have been applied in pavement analysis to investigate crack development. A single-edge notched beam test was simulated with the finite element method with the cohesive zone model, which has been widely used to simulate a cohesive crack. The effects of steel reinforcement, interface, and hot-mix asphalt (HMA) properties on crack initiation time and crack propagation rate were investigated. A damage value, an indication of the degradation of the initial stiffness of the material in cohesive elements, was used to define the degree of softening and to trace crack formation. On the basis of elastic analysis, the crack initiation time for the rei...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call