Abstract

A variational formulation and the associated finite element (FE) equations have been derived for general three-dimensional deformation of a planar anisotropic rigid-plastic sheet metal which obeys the strain-rate potential proposed by Barlat et al. [Int. J. Plasticity 9, 1(1993)] . By using the natural convected coordinate system, the effect of geometric change and the rotation of planar anisotropic axes were efficiently considered. In order to check the validity of the present formulation, a cylindrical cup deep drawing test was modeled for a 2008-T4 aluminum alloy sheet sample. Eating simulations were performed and planar anisotropic material properties were experimentally determined. Even though quantitative agreement was not fully achieved, reasonably good agreement was found between the FE simulation and the experiment in thickness strain distribution and caring. No numerical difficulty due to planar anisotropy was encountered, and the computational procedure was found to be very stable, requiring only moderate computational time. The results have shown that the present formulation for planar anisotropic deformation can provide a good basis for the analysis of sheet metal forming processes for planar anisotropic materials, especially for aluminum alloy sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.