Abstract

We develop an adaptive finite element method for island dynamics in epitaxial growth. We study a step-flow model, which consists of an adatom (adsorbed atom) diffusion equation on terraces of different height; thermodynamic boundary conditions on terrace boundaries including anisotropic line tension; and the normal velocity law for the motion of such boundaries determined by a two-sided flux, together with the one-dimensional anisotropic ``surface' diffusion (edge diffusion) of edge adatoms along the step edges. The problem is solved using independent meshes: a two-dimensional mesh for the adatom diffusion and one-dimensional meshes for the boundary evolution. A penalty method is used to incorporate the boundary conditions. The evolution of the terrace boundaries includes both the weighted/anisotropic mean curvature flow and the weighted/anisotropic edge diffusion. Its governing equation is solved by a semi-implicit front-tracking method using parametric finite elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.