Abstract

Phase-field models with conserved phase-field variables result in a 4th order evolution partial differential equation (PDE). When coupled with the usual 2nd order thermo-mechanics equations, such problems require special treatment. In the past, the finite element method (FEM) has been successfully applied to non-conserved phase fields, governed by a 2nd order PDE. For higher order equations, the convergence of the standard Galerkin FEM requires that the interpolation functions belong to a higher continuity class. We consider the Cahn–Hilliard phase-field model for diffusion-controlled solid state phase transformation in binary alloys, coupled with elasticity of the solid phases. A Galerkin finite element formulation is developed, with mixed-order interpolation: C 0 interpolation functions for displacements, and C 1 interpolation functions for the phase-field variable. To demonstrate convergence of the mixed interpolation scheme, we first study a one-dimensional problem – nucleation and growth of the intermediate phase in a thin-film diffusion couple with elasticity effects. Then, we study the effects of completeness of C 1 interpolation on parabolic problems in two space dimensions by considering the growth of the intermediate phase in a binary system. Quadratic convergence, expected for conforming elements, is achieved for both one- and two-dimensional systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.