Abstract
In this study, the effect of minerals composition, particle size and shape as well as electrodes distance from iron-phosphate ore samples, was investigated by using a commercial software. Comparison between high voltage pulses and conventional crushing showed that minerals of interest in the electrical comminution product are better liberated than in the conventional comminution. In order to elucidate and confirm the experimental results, numerical simulation of electrical field distributions/intensity were performed. The software uses the finite element method, a numerical technique for calculating approximate solutions of partial differential equations with known boundary conditions. Magnetite, apatite and quartz were the basic minerals of iron-phosphate ore components, and the main material property used in the simulations was electrical permittivity. The results showed that the induced electrical field was strongly dependent on the electrical properties of minerals, the feed particle size and the location of the magnetite mineral (due to higher permittivity) in the ore. The angle of particle contact surface with high voltage electrode was an important factor in the intensity of electrical field. Smaller contact angle resulted in higher intensity of the electrical field. Electrical discharge within the material was converted to electrohydraulic discharge within the surrounding water environment by increasing the distance between the high voltage electrode and the material contact surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.