Abstract

Usually, a polymer composite with a viscoelastic response matrix has a creep behavior. To predict this phenomenon, a good knowledge of the properties and mechanical constants of the material becomes important. Schapery’s equation represents a basic relation to study the nonlinear viscoelastic creep behavior of composite reinforced with carbon fiber (matrix made by polyethrtethrtketone (PEEK) and epoxy resin). The finite element method (FEM) is a classic, well known and powerful tool to determine the overall engineering constants. The method is applied to a fiber one-directional composite for two different applications: carbon fibers T800 reinforcing an epoxy matrix Fibredux 6376C and carbon fibers of the type IM6 reinforcing a thermoplastic material APC2. More cases have been considered. The experimental results provide a validation of the proposed method and a good agreement between theoretical and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.