Abstract

Excellent tire wear resistance, wet grip resistance, and rolling resistance have made silica-filled green elastomeric composites suitable for an electric vehicle to lower fuel consumption. The study of damage mechanics of such materials has to be carried out in order to maximize safety during their usage. Accordingly, we aim to develop a damage model to characterize the effect of geometric configuration for such elastomeric composites. A ‘VUSDFLD’ damage subroutine is developed for the elastomeric composites, which is used in finite element analysis (FEA) and verified experimentally within 2% error. It is demonstrated that the change in geometric configuration can affect the fracture properties like J-integral and geometry factor. The J-R curve fits with a power-law equation with a correlation factor greater than 0.98. In contrast, using analytical modeling, an empirical relationship is proposed to trace CTOD-R curves of elastomeric composites with R2 greater than 0.88, which exhibits dependency of geometric configuration on fracture of elastomeric composites. We envisage that this fracture model can solve most of the fracture-related problems in elastomeric composites used in tires for EV and allied applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call