Abstract
AbstractIn this paper we address the problem of the implementation of boundary conditions for the derived pressure Poisson equation of incompressible flow. It is shown that the direct Galerkin finite element formulation of the pressure Poisson equation automatically satisfies the inhomogeneous Neumann boundary conditions, thus avoiding the difficulty in specifying boundary conditions for pressure. This ensures that only physically meaningful pressure boundary conditions consistent with the Navier‐Stokes equations are imposed. Since second derivatives appear in this formulation, the conforming finite element method requires C1 continuity. However, for many problems of practical interest (i.e. high Reynolds numbers) the second derivatives need not be included, thus allowing the use of more conventional C0 elements. Numerical results using this approach for a wall‐driven contained flow within a square cavity verify the validity of the approach. Although the results were obtained for a two‐dimensional problem using the p‐version of the finite element method, the approach presented here is general and remains valid for the conventional h‐version as well as three‐dimensional problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.