Abstract

Nonlinear viscoelastic response of reinforced elastomers is modeled using a three-dimensional mixed finite element method with a nonlocal pressure field. A general second-order unconditionally stable exponential integrator based on a diagonal Padé approximation is developed and the Bergström–Boyce nonlinear viscoelastic law is employed as a prototype model. An implicit finite element scheme with consistent linearization is used and the novel integrator is successfully implemented. Finally, several viscoelastic examples, including a study of the unit cell for a solid propellant, are solved to demonstrate the computational algorithm and relevant underlying physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.