Abstract

A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed ‘u–p’ element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the ‘forward’ simulation and ‘inverse’ estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.