Abstract

For unidirectional ply laminates, the great diversity of the damage mechanisms and their patterns of evolution make it extremely difficult to estimate the strength margins. In the case of woven ply laminates, the number of damage mechanisms is fairly small (no transverse rupture occurs and the material has a greater resistance to delamination) and the behaviour of the material is fairly simple to model up to rupture. In this study, a numerical model for woven ply laminated composite structures up to rupture is developed. The implementation is performed in a Euler Backward scheme and the consistent tangent stiffness matrix is calculated. Comparison with some experiments on structures are made and the model predicts these experiments well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call