Abstract
This paper presents a finite element modeling procedure for predicting fatigue crack growth rate in butt welds subject to mode I loading condition. Sequentially coupled three-dimensional thermal–mechanical finite element model to simulate welding residual stress was first developed. The weld-induced residual stress effect on the fatigue crack growth rate was then modeled by calculating the stress intensity factor due to the residual stress field based on the superposition rule of the linear elastic fracture mechanics. The results demonstrated the significance of the residual stresses in assessment of the fatigue crack growth rate in the welds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.