Abstract
The recent tailing dam failure in Brazil has again emphasized the need of performing robust stability analysis prior to construction. This paper demonstrates the probabilistic dynamic stability analysis of tailing dams considering an existing rock-fill tailing dam in India. The stability analysis was performed using 2D finite element-based package RS2. In the probabilistic analysis, the strength parameters such as cohesion (c) and the friction angle (φ) were considered as random variables. In total, 3000 numbers of samples were generated assuming a normal distribution. Monte Carlo simulation was used to evaluate the probability of failure (PoF) and reliability index. Strength reduction method was used for the finite element analyses. A pseudo-static seismic loading was incorporated in the strength reduction analysis to check the seismic stability of the dam. A factor of safety (FoS) of 1.15 was observed from the deterministic analysis for downstream slope. For the same case, the probabilistic analysis provided a mean FoS of 1.19 with 5.46% probability of failure. The FoS values and the locations of the critical failure surface obtained by the limit equilibrium method and finite element method were compared. The observed FoS values were found to be higher than the values specified in the IS 7894-1975 (reaffirmed in 1997) and ANCOLD (1999). In the case of pseudo-static approach, the maximum displacement of 0.53 m was observed in the slope. Furthermore, nonlinear dynamic stability analysis was performed to simulate a true earthquake event. The permanent deformation of the slope after the earthquake was found to be 0.40 m. The zone of failure observed in both pseudo-static and nonlinear dynamic stability analyses was found to be the same. Overall, the results revealed that the spatial variability of the soil significantly influences the FoS values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.