Abstract

This paper focuses on the development of a new backcalculation method for concrete road structures based on a hybrid evolutionary global optimization algorithm, namely shuffled complex evolution (SCE). Evolutionary optimization algorithms are ideally suited for intrinsically multi-modal, non-convex, and discontinuous real-world problems such as pavement backcalculation because of their ability to explore very large and complex search spaces and locate the globally optimal solution using a parallel search mechanism as opposed to a point-by-point search mechanism employed by traditional optimization algorithms. SCE, a type of evolutionary optimization algorithms based on the tradeoff of exploration and exploitation, has proved to be an efficient method for many global optimization problems and in some cases it does not suffer the difficulties encountered by other evolutionary computation techniques. The SCE optimization approach is hybridized with a neural networks surrogate finite-element based forward pavement response model to enable rapid computation of global or near-global pavement layer moduli solutions. The proposed rigid pavement backcalculation model is evaluated using field non-destructive test data acquired from a full-scale airport pavement test facility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.